Studi Pengaruh Paduan Cr/Mo dengan Waktu Perendaman Cryogenic Treatment terhadap Sifat Keras, Tangguh, Tahan Abrasif, dan Struktur Mikro Baja Ni berbasis Laterit

Alfa Sendya Hayu Marzuki, Satrio Herbirowo, Bintang Adjiantoro, Yeni Muriani Zulaida, Efendi Mabruri

Sari

Grinding ball merupakan salah satu komponen dari industri tambang dan pengolahan mineral yang mempengaruhi biaya produksi. Kebutuhan grinding ball dalam negeri saat ini masih bergantung pada produk impor. Pemilihan baja berbasis laterit karena cadangan laterit di Indonesia sangat melimpah, selain itu baja laterit sudah memiliki kandungan nikel dimana unsur paduan tersebut baik untuk meningkatkan kekerasan yang dibutuhkan pada grinding ball. Namun tingkat kekerasan baja berbasis laterit yang digunakan pada penelitian ini belum memiliki nilai yang cukup untuk digunakan sebagai material grinding ball. Oleh karena itu, pada penelitian ini dilakukan proses cryogenic treatment dengan variasi waktu perendaman 10, 60, dan 360 menit serta menggunakan perbedaan komposisi paduan Cr dan Mo kemudian dilakukan pengujian kekerasan, ketahanan aus, ketangguhan dan analisis struktur mikro. Berdasarkan hasil yang diperoleh menunjukkan bahwa kekerasan setelah perlakuan mengalami peningkatan signifikan dari 17 menjadi 33,55 HRC. Selain itu, ketahanan abrasif setelah perlakuan juga meningkat seiring dengan penambahan waktu perendaman dari 0,000603 menjadi 0,000475 mg/cm2·putaran. Peningkatan tersebut terjadi karena adanya peningkatan persentase martensit pada sampel. Nilai kekerasan dan ketahanan aus terbaik terdapat pada sampel dengan paduan CrMo pada waktu perendaman 360 menit yaitu 44,1 HRC dan 0,000475 mg/cm2·putaran. Sehingga pada penelitian ini menunjukkan bahwa waktu perendaman cryogenic treatment dan komposisi paduan Cr dan Mo berpengaruh terhadap kekerasan, ketahanan abrasif serta ketangguhan baja nikel berbasis laterit.

 

Grinding ball is a component of the mining and mineral processing industry that affects production costs. Grinding ball needs in Indonesia still depend on imported products. Laterite-based steel is chosen because of the resource of laterite in Indonesia are very abundant, besides laterite steel has nickel content which is great for increasing the hardness that needed in grinding ball. However, the hardness of Ni laterite steel used in this study does not have enough hardness to be used as a grinding ball material. Therefore, in this study cryogenic treatment was carried out with variations in soaking time during10, 60 and 360 minutes and also using differences in the alloying composition of Cr/Mo then performed characterization of hardness, abrasive resistance, toughness and microstructure analysis. Based on the results obtained showed that hardness after treatment increases with increasing soaking time from 17 to 33,55 HRC significantlyIn addition, abrasive resistance after treatment also increases with increasing soaking time from 0,000603 to 0,000475 mg/cm2.cycle. This increase occurred because of an increase in the percentage of the martensite phase in the sample. The optimum value of hardness and wear resistance is found in samples with CrMo alloy at 360 minutes soaking time, which is 44.1 HRC and 0.000475 mg/cm2·cycle. This study shows that cryogenic treatment soaking time and Cr and Mo alloy composition affect the hardness, abrasive resistance, and toughness of laterite nickel-based steel.

Kata Kunci

Baja nikel laterit; cryogenic treatment; kekerasan; ketahanan abrasif; ketangguhan

Teks Lengkap:

PDF

Referensi

Amini, Kamran, Amin Akhbarizadeh, and Sirus Javadpour. 2012. “Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel during the Deep Cryogenic Heat Treatment.” Vacuum 86 (10): 1534–40. https://doi.org/10.1016/j.vacuum.2012.02.013.

Herbirowo, Satrio, and Bintang Adjiantoro. 2016. “Pengaruh Perlakuan Panas Terhadap Struktur Mikro Dan Kekuatan Mekanik Baja Nikel Laterit.” Widyariset 2 (2): 153–60.

Husein Abbas. 2012. “Effect of Cryogenic Treatment on the Properties of Low Carbon A858.” Journal of Engineering 18 (7).

Meng, Fanju, Kohsuke Tagashira, and Hideaki Sohma. 1994. “Wear Resistance and Microstructure of Cryogenic Treated Fe-1.4Cr-1C Bearing Steel.” Scripta Metallurgica et Materiala 31 (7): 865–68. https://doi.org/10.1016/0956-716X(94)90493-6.

Patil, P I, and Bimlesh Kumar. 2014. “Deep Cryogenic Treatment of Alloy Steels : A Review.” International Journal of Electronics, Communication & Soft Computing Science and Engineering 2 (8).

Sabih, Amar, Peter Radziszewski, and Ivan Mullany. 2017. “Investigating Grinding Media Differences in Microstructure, Hardness, Abrasion and Fracture Toughness.” Minerals Engineering 103–104: 43–53. https://doi.org/10.1016/j.mineng.2016.08.014.

Totten G.E. 2006. “Steel Heat Treatment_ Metallurgy and Technologies.” Steel Heat Tratment Handbook.

Vahdat, Seyed Ebrahim, Said Nategh, and Shamsoddin Mirdamadi. 2014. “Effect of Microstructure Parameters on Tensile Toughness of Tool Steel after Deep Cryogenic Treatment.” International Journal of Precision Engineering and Manufacturing 15 (3): 497–502. https://doi.org/10.1007/s12541-014-0363-4.

Varghese, Vinay, M. R. Ramesh, and D. Chakradhar. 2019. “Influence of Deep Cryogenic Treatment on Performance of Cemented Carbide (WC-Co) Inserts during Dry End Milling of Maraging Steel.” Journal of Manufacturing Processes 37 (April 2018): 242–50. https://doi.org/10.1016/j.jmapro.2018.11.030.

Vilma Ratia. 2016. Behavior of Martensitic Wear Resistant Steels in Abrasion and Impact Wear Testing Conditions. Tribologia Dissertation. Vol. 34.

Refbacks