Optimasi Presipitasi Logam Tanah Jarang dari Campuran Konsentrat Logam Tanah Jarang dengan Metode â€Response Surface Methodologyâ€
Sari
Dua sumber LTJ berasal dari mineral seperti monasit dan senotim. Ketersediaan LTJ di kerak bumi relatif sedikit, tersebar dan jarang terjadi dalam bentuk bijih. Dalam penelitian ini bahan baku yang digunakan adalah campuran konsentrat LTJ yang berasal dari PT. Monokem Surya. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh konsentrasi H2C2O4, kecepatan pengadukan dan suhu terhadap kemurnian dan pemungutan LTJ dari campuran konsentrat LTJ. Percobaan dilakukan dalam lima langkah: (1) Fusi alkali, proses dilakukan selama 3 jam pada suhu 450oC, dengan rasio padatan NaOH terhadap campuran konsentrat LTJ sebesar 1:1, untuk memutuskan ikatan fosfat; (2) ) Pelindian fosfat dalam produk fusi alkali menggunakan aquadest pada suhu 80oC; (3) Residu pelindian aquadest dilakukan proses perlindian menggunakan 6 M HCl selama 2 jam untuk melarutkan LTJ pada 90oC; (4) Menghilangkan kotoran seperti uranium dan thorium dengan mengendapkannya menggunakan NH4OH pada pH 1; (5) Presipitasi LTJ dari filtrat yang dihasilkan dari butir (4) menggunakan H2C2O4. Didapatkan hasil LTJ dengan kemurnian 96% dan pemungutan sebesar 95% pada konsentrasi H2C2O4 8,11%, kecepatan putar pengaduk 500 rpm, dan suhu 70oC.
Two sources of REEs are from mineral monazite and xenotime. The availability of REEs is relatively abundant in the earth’s crust, typically dispersed, and rarely occur in ores. In this study as raw material was a mixed rare earth concentrate from Monokem Surya Ltd. The purposes of this research were to determine the effect of concentration H2C2O4, stirring speed, and temperature regarding to purity and recovery REEs from the mixed rare earth concentrate. The experiments were conducted in five steps:(1) Alkaline fusion, the process was performed about 3 hours at 450oC, with ratio of NaOH solid to the mixed rare earth concentrate sand was 1:1, in order to break phosphate bonds;(2) Leaching of phosphate in alkaline fusion product using aquadest at 80 oC; (3) Aquadest leaching residue was leached using 6 M HCl for 2 hours to dissolve REEs at 90 oC; (4) Removal of impurities such as uranium and thorium by precipitating them using NH4OH at pH 1; (5) Precipitation of REEs from filtrate produced from point (4) using H2C2O4. The results of REEs with 96% purity and 95% recovery was obtained at concentration H2C2O4 8,11%, stirring speed 500 rpm, and temperature 70oC.
Kata Kunci
Teks Lengkap:
PDFReferensi
Behera, S.K., Meena, H., Chakraborty, S., dan Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018;28(4):621–629
Bellamy, L.J., dan Pace, R.J. Hydrogen bonding in carboxylic acids—I. Oxalic acids. Spectrochim Acta. 1963;19(2):435–42
Binnemans, K., Tom, P., Blanpain, B., Gerven, T. V., Yang. Y., dan Walton, A. Recycling of rare earths : a critical review. J. Clean Prod. 2013;51:1–22.
Galvin, J., dan Safarzadeh, M.S. Decomposition of monazite concentrate in potassium hydroxide solution. Journal of Environmental Chemical Engineering. 2018;6:1353–63.
Harjanto, S., Virdhian, S., dan Afrilinda, E. Characterization of Indonesia rare earth minerals and their potential processing techniques, Proceedings of the 52nd Conference of Metallurgists (COM) (Montreal), 2013.
Honary, S., Ebrahimi, P., dan Hadianamrei, R. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology, Pharmaceutical Development and Technology. 2014;19(8):987–998.
Hoshino, M., Sanematsu, K., dan Watanabe, Y. REE Mineralogy and Resources. In: Handbook on the Physics and Chemistry of Rare Earths. 1 ed. Tsukuba: Elsevier B.V. 2016;129–291.
Jordens, A., Cheng, Y.P., dan Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner Eng. 2013;41:97–114
Krishnamurthy, N., dan Gupta, C.K. Extractive metallurgy of rare earths, second edition. Extractive Metallurgy of Rare Earths. 2015;1–809
Liu, F., Porvali, A., Wang, J., Wang, H., Peng, C., dan Wilson, B.P. Recovery and separation of rare earths and boron from spent Nd-Fe-B magnets. Miner Eng. 2020;145:106097
Myers, R.H., Montgomery, D.C., dan Anderson-Cook, C.M. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons. 2016
Petrus, H.T.B.M, Wijaya, A., Iskandar, Y., Bratakusuma, D., Setiawan, H., Wiratni, dan Astuti, W. Pengambilan Lantanum dan Nikel dari Katalis Bekas Menggunakan Asam Sitrat: Peninjauan Performa secara Kuantitatif Menggunakan Response Surface Method. Metalurgi. 2018;33(2):91–100.
Prameswara, G., Trisnawati, I., Poernomo, H., Mulyono, P., Prasetya, A., dan Petrus, H.T.B.M. Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings. Mining, Metallurgy & Exploration. 2020.
Silva, R.G., Morais, C.A., Teixeira, L.V., dan Oliveira, É.D. Selective Precipitation of High-Quality Rare Earth Oxalates or Carbonates from a Purified Sulfuric Liquor Containing Soluble Impurities. Mining, Metall Explor. 2019;36(5):967–77.
Santoso, U., N. Tabahana, H.K.H, dan Sunardi, Penggunaan Response Surface Methodology Untuk Optimasi Proses Dekafeinasi Menggunakan Kitosan Dari Kulit Udang. Teknol. dan Ind. Pangan. 2002;XIII(1):60–69.
Virdhian, S., dan Afrilinda, E. Karakterisasi Mineral Tanah Jarang Ikutan Timah dan Potensi Pengembangan Industri Berbasis Unsur Tanah Jarang. Metal Indonesia. 2018;36(2):61-69.
Xie, F., An, T., Dreisinger, D., dan Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng. 2014;56:10–28.
Refbacks
- Saat ini tidak ada refbacks.