Kajian Literatur Parameter Proses Reduksi Selektif Bijih Nikel Laterit

Fajar Nurjaman, Fathan Bahfie, Ulin Herlina, Widi Astuti, Bambang Suharno

Sari

Proses reduksi selektif bijih nikel laterit merupakan salah satu metode pirometalurgi yang dilakukan dengan mereduksi senyawa besi dan nikel oksida dalam bijih nikel laterit pada temperatur 1100-1200°C menjadi logam ferronikel dengan membatasi metalisasi besi melalui penambahan aditif dan penggunaan jumlah reduktan yang terbatas. Kandungan dan perolehan  nikel dalam konsentrat semakin meningkat dengan semakin banyaknya aditif yang ditambahkan. Namun penambahan aditif dalam jumlah banyak akan meningkatkan biaya produksi proses reduksi selektif tersebut. Penggunaan reduktan batubara dengan kandungan sulfur tinggi memungkinkan untuk mensubstitusi penggunaan aditif. Proses reduksi selektif tidak hanya melibatkan reaksi solid-state melainkan juga melibatkan reaksi solid-liquid state. Oleh karena itu biaya produksi proses reduksi selektif juga dapat diminimalkan  melalui penggunaan basisitas yang optimal sehingga diperoleh kondisi proses dengan titik lebur fasa metalik dan non-metalik yang rendah. Dengan konsumsi energi/temperatur reduksi yang lebih rendah, diharapkan teknologi reduksi selektif bijih nikel laterit mampu menggantikan teknologi pirometalurgi konvensional (blast furnace dan rotary kiln electric arc furnace). Teknologi ini juga diharapkan mampu menjadi solusi permasalahan terkait pengolahan bijih nikel laterit kadar rendah (<1,7% Ni) yang ketersediaannya sangat berlimpah di dunia, dimana nilai keekonomisan yang diperoleh akan sangat rendah jika menggunakan teknologi pirometalurgi konvensional.

Kata Kunci

bijih nikel laterit; ferronikel; aditif; reduktan; basisitas

Teks Lengkap:

PDF

Referensi

Astuti, W., Hirajima, T., Sasaki, K., Okibe, N., 2016. Comparison of Atmospheric Citric Acid Leaching Kinetics of Nickel from Different Indonesian Saprolitic Ores. Hydrometallurgy 161, 138-151.

Bunjaku, A., Kekkonen, M., Taskinen, P. & Holappa, L., 2011. Thermal Behaviour of Hydrous Nickel–Magnesium Silicates When Heating Up To 750°C. Mineral Processing and Extractive Metallurgy, vol. 120, No. 3,139-146.

Chukwuleke, O. P., Jiu-Ju, C., Chukwujekwu, S., Song, X., 2009. Shift from coke to coal using direct reduction method and challenges. Journal of Iron and Steel Research, 16(2): 01-05.

Chen, G-J., Shiau, J-S., Liu, S-H., and Hwang, W-S., 2016. Optimal Combination of Calcination and Reduction Conditions as well as Na2SO4 Additive for Carbothermic Reduction of Limonite Ore. Materials Transaction, vol. 57, 1560-1566.

Dalvi, A.D., Bacon, W.G., Osborne, R.C., 2004. The past and future of nickel laterites. In: PDAC 2004 International Convention, March 7–10, 2004. pp. 1–27. .

Elliot, R., Pickles, C. A., and Peacey, J., 2017. Ferronickel Particle Formation during The Carbothermic Reduction of a Limonitic Laterite Ore.Minerals Engineering, vol. 100, 166-176.

Elliot, R., Rodrigues, F., Pickles, C. A., and Peacey, J., 2015. A Two-stage Thermal Upgrading Process for Nickeliferous Limonitic Laterite Ores.Canadian Metallurgical Quarterly, vol. 100, 1-11.

Elskaki A., Reck, B. K., Graedel, T. E., 2017. Anthropogenic Nickel Supply, Demand, and Associated Energy and Water Use. Resources, Conversion & Recycling, 125, 300-307.

Farrokhpay, S., Filippov, L., Fornasiero, D. 2019. Pre-concentration of nickel in laterite ores using physical separation methods. Minerals Engineering, 141: 105892.

Hang, G., Xue, Z., Wang, J., and Wu, Y. 2020. Mechanism of calcium sulphate on the aggregation and growth of ferronickel particles in the self-reduction of saprolitic nickel laterite ore. Metals, 10(423): 1-17. DOI: 10.3390 met10040423.

Harjanto, S. and Rhamdani, M. A. 2019. Sulfides formation in carbothermic reduction of saprolitic nickel laterite ore using low-rank coals and additives: a thermodynamic simulation analysis. Minerals, 9(631): 1-21. DOI: 10.3390/min9100631

Harjanto, S. and Ulum, R. M., 2015. SiO2/MgO Ratio Effect on Carbothermic Reaction of Synthetic Nickelliferrous Mixtures. Advanced Materials Research, 1112, 542-545.

Harris, C. T., Peacey, J. G., and Pickles, C. A., 2009. Thermal Upgrading of Nickeliferous Laterite. Proceeding of 48th Conference Metallurgists, August 23-26, Ontario, Canada.

Harris, C. T., Peacey, J. G., and Pickles, C. A., 2011. Selective Sulphidation of a Nickeliferous Lateritic Ore.Minerals Engineering, vol. 24, 651-660.

Harris, C. T., Peacey, J. G., and Pickles, C. A., 2013. Selective Sulphidation and Flotation of Nickel from A Nickeliferous Laterite Ore. Minerals Engineering, vol. 54,21-31.

Jiang, M., Sun, T., Liu, Z., Kou, J., Liu, N., and Zhang, S., 2013. Mechanism of Sodium Sulfate in Promoting Selective Reduction of Nickel Laterite Ore during Reduction Roasting Process.International Journal of Mineral Processing, vol. 123, 32-38.

Li, G., Shi, T., Rao, M., Jiang, T., and Zhang, Y., 2012. Beneficiation of Nickeliferrous Laterite by Reduction Roasting in The Presence of Sodium Sulfate. Minerals Engineering, vol. 32, 19-26.

Li, G., Luo, J., Peng, Z., Zhang, Y., Rao, M., Jiang, T., 2015. Effect of Quarternary Basicity on Melting Behaviour and Ferronickel Particles Growth of Saprolitic Laterite Ores in Krupp Renn Process.ISIJ International, 55, 1828-1833.

Maksum, A., Husein, M. K. E., Permana, S., Rustandi, A., Soedarsono, J. W., 2018. A Preliminary Study on The Reduction of Limonite Ore by Using Rice Husk as a Reducing Agent. IOP Conf. Series and Engineering, 316, 012050.

Nurjaman, F., Rahmahwaty, A., Karimy, M. F., Hastriana, N., Shofi, A., Herlina, U., Suharno, B., Ferdian, D. 2019. The role of sodium-based additives on reduction of nickel laterite ore. IOP Conf. Series: Materials Science and Engineering 478 (2019) 012001 DOI:10.1088/1757-899X/478/1/012001.

Oxley, A., Smith, M. E., Caceres, O. 2015. Why heap leach nickel laterite?. Minerals Engineering, 88: 53-60.

Oxley, A., Barcza, N., 2013. Hydro-Pyro Integration in The Processing of Nickel Laterites. Minerals Engineering, 54, December, 2-13.

Pan, J., Zheng, G., Zhu, D., Zhou, X., 2013. Utilization of Nickel Slag using Selective Reduction by Magnetic Separation.Trans. Nonferrous. Met. Soc. China, 23, 3421-3427.

Petrus, H. T. B. M., Putera, A. D. P., Sugiarto, E., Perdana, I., Warmada, I. W., Nurjaman, F., Astuti, W., Mursito, A. T. 2019. Kinetics on Roasting Reduction of Limonitic Laterite Ore using Coconut-Charcoal and Anthracite Reductants. Minerals Engineering, 132, 126-133.

Rao, M., Li, G., Jiang, T., Lio, J., Zhang, Y., and Fan, X., 2013. Carbothermic Reduction of Nickeliferous laterite Ores for Nickel Pig Iron Production in China: A Review. JOM, Vol. 60, No. 11, 1573-1583.

Rao, M., Li, G., Zhang, X., Luo, J., Peng, Z., and Jiang, T., 2016. Reductive Roasting of Nickel Laterite Ore with Sodium Sulphate for Fe-Ni Production, Part I: Reduction/Sulfidation Characteristics.Separation Science and Technology, vol. 51, 1408-1420.

Setiawan, I., Harjanto, S., Rustandi, A., and Subagja, R., 2014. Reducibility of Low Nickel Lateritic Ores with Presence of Calcium Sulfate. International Journal of Engineering and Technology, vol. 14, 56-66.

Setiawan, I., Triana, T., Febriana, E., Firdiyono, F. 2020. Carbothermic Selective Reduction of Laterite Nickel Ore by Addition of Sulfur and Sodium Hydroxide to Produce Ferronickel. Proceedings of the 3rd International Seminar on Metallurgy and Materials, AIP Conf. Proc. 2232, 060006-1 – 060006-9.

Shen, Y., Chong, J., Huang, Z., Tian, J., Zhang, W., Tang, X., Ding, W., and Du, X. 2019. Viscosity and structure of a CaO-SiO2-FeO-MgO system during a modified process from nickel slag by CaO. Materials, 12(2562):1-16. DOI: 10.3390/ma12162562.

Shofi, A., Rahmahwati, A., Nurjaman, F., Suharno, B., 2019. Effect of Reduction Temperature and Sodium Based Additives on Nickel Up-Grading Process of Laterite Ores. IOP Conf. Ser.: Mater. Sci. Eng., 541, 012002

Solihin, 2015. Synthesis of Nickel Containing Pig Iron (NCPI) by using Limonite Type of Lateritic Ore from South East Sulawesi. Ris. Geo. Tam, Vol. 25, No. 1, 31-36.

Suharno, B., Ilman, N. P., Shofi, A., Ferdian, D., Nurjaman, F., 2019. Study of Low Grade Nickel Laterite Processing using Palm Shell Charcoal as Reductant. In. Proc. of Quality in Research Conference, 22-24 July 2019, Padang, Indonesia.

Tian, H., Pan, J., Zhu, D., Yang, C., Guo, Z., Xue, Y. 2020. Improved beneficiation of nickel and iron from a low-grade saprolite laterite by addition of limonitic laterite ore and CaCO3. Jounal of Materials Research and Technology, 9(2): 2578-2589.

Valix, M. and Cheung, W.H. 2002. Study of Phase Transformation of Laterite Ores at High Temperature. Minerals Engineering, 15, p. 607-612.

Warner, A. E. M., Díaz, C. M., Dalvi, A. D., Mackey, P. J., and Tarasov, A. V., 2006. JOM World Nonferrous Smelter Survey, Part III: Nickel: Laterite. JOM, 1-20.

Wills, B. A., and Napier-Munn, T., 2006. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th ed. Burlington, MA: Butterworth-Heinemann.

Zhu, D. Q., Chul, Y., Vining, K., Hapugoda, S., Douglas, J.,Pan, J.,& Zheng, G. L., 2012. Upgrading Low Nickel Content Laterite Ores using Selective Reduction Followed by Magnetic Separation. International Journal of Mineral Processing, vol. 106-109, 1-7.

Zhu, D., Zhou, X., Luo, Y., Pan, J., Bai, B., 2016. Reduction Smelting Low Ferronickel from Pre-concentrated Nickel Iron Ore of Nickel Lateriteâ€, High Temp. Mater. Proc., 35 (10), 1031-1036.

Zhu, D., Pan, L., Guo, Z., Pan, J., Zhang, F. 2019. Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process. Advanced Powder Technology, 30(2): 451-460.

Refbacks

  • Saat ini tidak ada refbacks.