Analisis Struktur Mikro dan Ketahanan Aus Besi Tuang Nodular untuk Aplikasi Work Roll

Herry Oktadinata, Scendi Alamsyah

Sari

Work roll merupakan komponen yang dibutuhkan dalam proses pengerolan baja. Umur pakai work roll dipengaruhi oleh beberapa sifat seperti kekerasan, ketahanan aus, stabilitas material pada suhu tinggi dan ketahanan terhadap kejutan termal. Tujuan penelitian ini adalah untuk mengkaji struktur mikro dan ketahanan aus besi tuang nodular yang digunakan untuk aplikasi work roll. Penelitian ini dilakukan pada tiga work roll yang disuplai oleh pabrikan berbeda, masing-masing disebut sampel A, B, dan C. Pengujian yang dilakukan meliputi pengujian komposisi kimia, pengamatan struktur mikro, pengujian kekerasan dan laju keausan. Hasil penelitian menunjukkan bahwa struktur mikro dari sampel A memiliki lebih banyak perlit dan sedikit ferit dengan kandungan 1,26% Si, 3,32% C yang menghasilkan carbon equivalent (CE) sebesar 3,73%, nodularity 54,94%, kekerasan 48,16 HRC, dan laju keausan 10,9 x 10-4 gram/menit. Sampel B memiliki sedikit perlit dan banyak ferit dengan kandungan 2,19% Si dan 2,49% C yang menghasilkan CE sebesar 3,21%, nodularity 73,73%, kekerasan 40,16 HRC, dan laju keausan 13,1 x 10-4 gram/menit. Dan sampel C memiliki lebih banyak perlit dan sedikit ferit dengan kandungan 2,6% Si dan 3,45% C yang menghasilkan CE sebesar 4,308%, nodularity 68,96%, kekerasan 49,66 HRC, dan laju keausan 8,1 x 10-4 gram/menit. Dari data tersebut dapat disimpulkan bahwa komponen work roll sampel C memiliki sifat ketahanan aus yang tinggi dengan laju keausan sebesar 8,1 x 10-4 gram/menit dengan kekerasan tertinggi sebesar 49,66 HRC. 

 

Abstract

Work roll is a required component in the steel rolling process. The service life of work rolls is affected by several properties such as hardness, wear resistance, material stability at high temperatures and resistance to thermal shock. The aim of this work was to study the microstructure and wear resistance of nodular cast iron used for work roll applications. This study was conducted on three work rolls from different suppliers, each called samples A, B, and C. The investigation included the chemical composition measurement, microstructure observation, hardness test and wear rate. The results showed that the microstructure of sample A had more pearlite and less ferrite with 1.26% Si and 3.32% C, which resulted in a CE of 3.73%, nodularity 54,94%, hardness 48.16 HRC, and wear rate of 10.9 x 10-4 gr/min. Sample B has a little pearlite and a lot of ferrite with 2.19% Si and 2.49% C, which produces a CE of 3.21%, nodularity 73,73%, hardness 40.16 HRC, and wear rate of 13.1 x 10-4 g/min. And sample C has more pearlite and less ferrite with elements 2.6% Si and 3.45% C, which produces a CE of 4.308%, nodularity of 68,96%, hardness of 49.66 HRC, and wear rate of 8.1 x 10-4 g/min. From these data, sample C's work roll component has high wear resistance with a wear rate of 8.1 x 10-4 g/min with the highest hardness of 49.66 HRC.

Kata Kunci

Besi Tuang Nodular; Komposisi Kimia; Struktur Mikro; Ketahanan Aus; Kekerasan

Teks Lengkap:

PDF

Referensi

Al-Ghonamy, A. I., M. Ramadan, N. Fathy, K. M. Hafez, and A. A. El-Wakil. 2012. “Effect of Graphite Nodularity on Mechanical Properties of Ductile Iron for Waterworks Fittings and Accessories.” International Journal of Civil & Environmental Engineering 10 (3): 1–5.

ASM. 1992. “Casting (Vol.15).” ASM International 15.

ASM. 1993. “Properties and Selection: Iron Steel and High Performance Alloys (Vol. 1).” ASM International 1 (5). https://doi.org/10.3390/met9050560.

Asmadi. 2016. “Pembuatan Besi Cor Nodular” 3 (1).

ASTM. n.d. “ASTM A247 : Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings 1.” https://doi.org/10.1520/A0247-19.

ASTM. 2010. “ASTM E986 : Standard Practice for Scanning Electron Microscope Beam Size Characterization” 04 (Reapproved): 3–5. https://doi.org/10.1520/E0986-04R10.2.

ASTM. 2012. “ASTM E3 : Standard Guide for Preparation of Metallographic Specimens.” ASTM International 03.01 (July): 1–12. https://doi.org/10.1520/E0003-11R17.1.

ASTM. 2013. “ASTM E1999 : Standard Test Method for Analysis of Cast Iron by Spark Atomic Emission” 99 (2004): 1–7. https://doi.org/10.1520/E1999-18.1.

ASTM. 2014. “ASTM E18 Standard Test Methods for Rockwell Hardness of Metallic Materials,” 1–38. https://doi.org/10.1520/E0018-14.2.

Bayuseno, Athanasius P, Jl SH Soedarto, and Kampus Tembalang Semarang. 2010. “Penambahan Magnesium-Ferrosilikon Pada Proses Pembuatan Besi Cor Grafit Bulat: Evaluasi Terhadap Peningkatan Sifat Mekanik Dan Impak.” Vol. 12.

Eka, Lusiana, Fakultas Teknik, Program Studi, Teknik Metalurgi, and D A N Material. 2009. “Pengaruh Nilai Carbon Equivalent Terhadap Struktur Mikro Dan Sifat Mekanis Besi Tuang Nodular Dinding Tipis 1 Mm.”

Fatahalla, Nabil. 1996. “Effect of the Percentage Carbon Equivalent on the Nodule Characteristics , Density and Modulus of Elasticity of Ductile Cast Iron” 31: 4933–37.

Giacopini, A, R E Boeri, and J A Sikora. 2003. “Carbide Dissolution in Thin Wall Ductile Iron” 19 (December).

Kapoor, Samit. 2012. High-Temperature Hardness and Wear Resistance of Stellite Alloys. World Academy of Science, Engineering and Technology. Vol. 6.

Kiss, I. 2010. “Increasing the Rolling-Mill Rolls Quality - in Some Multidisciplinary Research,” 31–36.

Kiss, Imre, and Sorin Ratiu. n.d. “The Basic Chemical Composition Influences Upon.” 2004.

Liu, Yangzhen, Jiandong Xing, Yefei Li, Yong Wang, Lei Wang, and Baochao Zheng. 2016. “Effect of Carbon Equivalent on Thermal and Mechanical Properties of Compacted Graphite Cast Iron.” https://doi.org/10.1557/jmr.2016.263.

Ray, Siddhartha. 2015. Principles and Applications of Metal Rolling. Principles and Applications of Metal Rolling. https://doi.org/10.1017/cbo9781139879293.

Refbacks

  • Saat ini tidak ada refbacks.