Pengaruh Variasi pH Larutan Umpan terhadap Percent Recovery Litium dari Geothermal Brine Sintesis dengan Proses Low Pressure Nanofiltration

Sutijan Sutijan, Christopher Mario Hananto, Stevanus Adi Darma, Vincent Sutresno Hadi Sujoto, Fika Rofiek Mufakhir, Widi Astuti, Himawan Tri Bayu Murti Petrus

Sari

Penggunaan litium berkembang pesat secara signifikan di pasar global, terutama di Indonesia. Untuk memenuhi permintaan tersebut, ekstraksi litium yang berharga dari sumber alam lain dipertimbangkan, seperti air garam sisa panas bumi (geothermal brine). Penelitian dilakukan dengan menggunakan metode nanofiltrasi. Selama penelitian, proses dioperasikan pada variasi tekanan (5, 7, dan 9 bar) dan variasi pH (4, 7, dan 10). Oleh karena adanya kemungkinan fouling pada membran dan fenomena yang terjadi tidak dapat diamati dengan baik, maka digunakan geothermal brine sintetis pada penelitian ini sehingga diasumsikan bahwa silika telah dihilangkan sebelumnya. Berdasarkan hasil analisa data penelitian, maka dapat dapat dilihat bahwa perbedaan pH dan tekanan memainkan peran penting dalam konsentrasi litium dari geothermal brine. Dengn menggunakan Response Surface Method(RSM) diketahui bahwa recovery litium tertinggi diperoleh pada kondisi operasi pH 10 dan tekanan 9 bar.

 

Abstract

The use of lithium is growing significantly in the global market, especially in Indonesia. To meet this demand, extraction of valuable lithium from other natural sources is considered, such as geothermal brine. The research was conducted using the nanofiltration method. During the study, the process was operated at various pressures (5, 7, and 9 bar) and pH variations (4, 7, and 10). Due to the possibility of fouling on the membrane and the phenomenon that occurs cannot be observed properly, synthetic geothermal brine is used in this study so that it is assumed that the silica has been removed previously. Based on the analysis of research data, it can be seen that the difference in pH and pressure plays an important role in the lithium concentration of geothermal brine. By using the Response Surface Method (RSM) it is known that the highest lithium recovery is obtained at operating conditions of pH 10 and pressure of 9 bar.

Kata Kunci

Geothermal Brine; Litium; Nanofiltrasi; Teknologi Membran

Teks Lengkap:

PDF

Referensi

An, Jeon Woong, Dong Jun Kang, Khuyen Thi Tran, Myong Jun Kim, Tuti Lim, and Tam Tran. 2012. “Recovery of Lithium from Uyuni Salar Brine.” Hydrometallurgy 117–118: 64–70. https://doi.org/10.1016/j.hydromet.2012.02.008.

Bruggen, B. Van der, L. Braeken, and C. Vandecasteele. 2002. “Evaluation of Parameters Describing Flux Decline in Nanofiltration of Aqueous Solutions Containing Organic Compounds.” Desalination 147 (1–3): 281–88. https://doi.org/10.1016/S0011-9164(02)00553-2.

Bruggen, B. Van der, M. Mänttäri, and M. Nyström. 2008. “Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review.” Separation and Purification Technology 63 (2): 251–63. https://doi.org/10.1016/j.seppur.2008.05.010.

Bruggen, Bart Van Der, Carlo Vandecasteele, Tim Van Gestel, Wim Doyen, and Roger Leysen. 2003. “A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production.” Environmental Progress 22 (1): 46–56. https://doi.org/10.1002/ep.670220116.

Calisaya-Azpilcueta, Daniel, Sebastián Herrera-Leon, and Luis A. Cisternas. 2020. “Current and Future Global Lithium Production Till 2025.” The Open Chemical Engineering Journal 14 (1): 36–51. https://doi.org/10.2174/1874123102014010036.

Childress, Amy E., and Menachem Elimelech. 1996. “Effect of Solution Chemistry on the Surface Charge of Polymeric Reverse Osmosis and Nanofiltration Membranes.” Journal of Membrane Science 119 (2): 253–68. https://doi.org/10.1016/0376-7388(96)00127-5.

“Committee Report: Membrane Desalting Technologies.” 1989. Journal - American Water Works Association 81 (11): 30–37. https://doi.org/10.1002/j.1551-8833.1989.tb03303.x.

Gong, Lingyan, Wei Ouyang, Zirui Li, and Jongyoon Han. 2018. “Direct Numerical Simulation of Continuous Lithium Extraction from High Mg2+/Li+ Ratio Brines Using Microfluidic Channels with Ion Concentration Polarization.” Journal of Membrane Science 556 (January): 34–41. https://doi.org/10.1016/j.memsci.2018.03.078.

Hilal, Nidal, H. Al-Zoubi, N. A. Darwish, A. W. Mohammad, and M. Abu Arabi. 2004. “A Comprehensive Review of Nanofiltration Membranes: Treatment, Pretreatment, Modelling, and Atomic Force Microscopy.” Desalination 170 (3): 281–308. https://doi.org/10.1016/j.desal.2004.01.007.

Kusuma, Gerry A, Glanny Mangindaan, and Marthinus Pakiding. 2018. “Analisa Efisiensi Thermal Pembangkit Listrik Tenaga Panas Bumi Lahendong Unit 5 Dan 6 Di Tompaso.” Jurnal Teknik Elektro Dan Komputer 7 (2): 123–34.

Li, Xianhui, Yinghui Mo, Weihua Qing, Senlin Shao, Chuyang Y. Tang, and Jianxin Li. 2019. “Membrane-Based Technologies for Lithium Recovery from Water Lithium Resources: A Review.” Journal of Membrane Science 591 (January): 117317. https://doi.org/10.1016/j.memsci.2019.117317.

Luo, Jianquan, and Yinhua Wan. 2013. “Effects of PH and Salt on Nanofiltration-a Critical Review.” Journal of Membrane Science 438: 18–28. https://doi.org/10.1016/j.memsci.2013.03.029.

Mänttäri, Mika, Arto Pihlajamäki, and Marianne Nyström. 2006. “Effect of PH on Hydrophilicity and Charge and Their Effect on the Filtration Efficiency of NF Membranes at Different PH.” Journal of Membrane Science 280 (1–2): 311–20. https://doi.org/10.1016/j.memsci.2006.01.034.

Meshram, Pratima, B. D. Pandey, and T. R. Mankhand. 2014. “Extraction of Lithium from Primary and Secondary Sources by Pre-Treatment, Leaching and Separation: A Comprehensive Review.” Hydrometallurgy 150: 192–208. https://doi.org/10.1016/j.hydromet.2014.10.012.

Mohammad, A. W., N. Hilal, H. Al-Zoubi, and N. A. Darwish. 2007. “Prediction of Permeate Fluxes and Rejections of Highly Concentrated Salts in Nanofiltration Membranes.” Journal of Membrane Science 289 (1–2): 40–50. https://doi.org/10.1016/j.memsci.2006.11.035.

Mulder, H.V.M. 1995. “Membrane Separations Technology. Principles and Applications.” Elsevier.

Nanda, Dipankar, Kuo Lun Tung, Yu Ling Li, Nien Jung Lin, and Ching Jung Chuang. 2010. “Effect of PH on Membrane Morphology, Fouling Potential, and Filtration Performance of Nanofiltration Membrane for Water Softening.” Journal of Membrane Science 349 (1–2): 411–20. https://doi.org/10.1016/j.memsci.2009.12.004.

Pambudi, Nugroho Agung, Ryuichi Itoi, Rie Yamashiro, Boy Yoseph CSS Syah Alam, Loren Tusara, Saeid Jalilinasrabady, and Jaelani Khasani. 2015. “The Behavior of Silica in Geothermal Brine from Dieng Geothermal Power Plant, Indonesia.” Geothermics 54 (March): 109–14. https://doi.org/10.1016/j.geothermics.2014.12.003.

Pérez-González, A., R. Ibáñez, P. Gómez, A. M. Urtiaga, I. Ortiz, and J. A. Irabien. 2015. “Nanofiltration Separation of Polyvalent and Monovalent Anions in Desalination Brines.” Journal of Membrane Science 473: 16–27. https://doi.org/10.1016/j.memsci.2014.08.045.

Petersen, Robert J. 1993. “Composite Reverse Osmosis and Nanofiltration Membranes.” Journal of Membrane Science 83 (1): 81–150. https://doi.org/10.1016/0376-7388(93)80014-O.

Quist-Jensen, Cejna Anna, Aamer Ali, Enrico Drioli, and Francesca Macedonio. 2019. “Perspectives on Mining from Sea and Other Alternative Strategies for Minerals and Water Recovery – The Development of Novel Membrane Operations.” Journal of the Taiwan Institute of Chemical Engineers 94: 129–34. https://doi.org/10.1016/j.jtice.2018.02.002.

Sahdarani, D N, M A Ponka, and A D Oktaviani. 2020. “Geothermal Energy As An Alternative Source For Indonesia’s Energy Security: The Prospect And Challenges.” Journal of Strategic and Global Studies 3 (1). https://doi.org/10.7454/jsgs.v3i1.1024.

Schäfer, A. J., A. G. Fane, and T. D. Waite. 2000. “Fouling Effects on Rejection in the Membrane Filtration of Natural Waters.” Desalination 131 (1–3): 215–24. https://doi.org/10.1016/S0011-9164(00)90020-1.

Sujoto, Vincent Sutresno Hadi, Sutijan, Widi Astuti, Slamet Sumardi, Isana Supiah Yosephine Louis, and Himawan Tri Bayu Murti Petrus. 2022. “Effect of Operating Conditions on Lithium Recovery from Synthetic Geothermal Brine Using Electrodialysis Method.” Journal of Sustainable Metallurgy. https://doi.org/10.1007/s40831-021-00488-3.

Swain, Basudev. 2017. “Recovery and Recycling of Lithium: A Review.” Separation and Purification Technology 172: 388–403. https://doi.org/10.1016/j.seppur.2016.08.031.

Szoke, Szabolcs, Gyorgy Patzay, and Laszlo Weiser. 2003. “Characteristics of Thin-Film Nanofiltration Membranes at Various PH-Values.” Desalination 151 (2): 123–29. https://doi.org/10.1016/S0011-9164(02)00990-6.

Vrouwenvelder, H. S., J. A.M. Van Paassen, H. C. Folmer, Jan A.M.H. Hofman, M. M. Nederlof, and D. Van Der Kooij. 1998. “Biofouling of Membranes for Drinking Water Production.” Desalination 118 (1–3): 157–66. https://doi.org/10.1016/S0011-9164(98)00116-7.

Vrouwenvelder, J. S., J. W.N.M. Kappelhof, S. G.J. Heijman, J. C. Schippers, and D. van der Kooij. 2003. “Tools for Fouling Diagnosis of NF and RO Membranes and Assessment of the Fouling Potential of Feed Water.” Desalination 157 (1–3): 361–65. https://doi.org/10.1016/S0011-9164(03)00417-X.

Wang, Xiao Lin, Wei Juan Shang, Da Xin Wang, Ling Wu, and Cong Hui Tu. 2009. “Characterization and Applications of Nanofiltration Membranes: State of the Art.” Desalination 236 (1–3): 316–26. https://doi.org/10.1016/j.desal.2007.10.082.

Zabolotskii, V. I., V. F. Pis’Menskii, O. A. Demina, and L. Novak. 2013. “Effect of Concentration Polarization on Electrodialytic Concentrating of Dilute NaCl and NH4NO3 Solutions.” Russian Journal of Electrochemistry 49 (6): 563–70. https://doi.org/10.1134/S1023193513060153.

Zhao, Li Ming, Qing Bai Chen, Zhi Yong Ji, Jie Liu, Ying Ying Zhao, Xiao Fu Guo, and Jun Sheng Yuan. 2018. “Separating and Recovering Lithium from Brines Using Selective-Electrodialysis: Sensitivity to Temperature.” Chemical Engineering Research and Design 140 (8): 116–27. https://doi.org/10.1016/j.cherd.2018.10.009.

Refbacks

  • Saat ini tidak ada refbacks.