Pendekatan Model Empiris untuk Prediksi Kehilangan Berat dan Laju Korosi AISI 304 pada Media Air Laut

Rizqi Ilmal Yaqin, Mega Lazuardi Umar, Bambang Hari Priyambodo, Sugeng Slamet, Miftakhur Rohmah

Sari

Penelitian sebelumnya telah melakukan evaluasi menggunakan pendekatan empiris untuk prediksi korosi pada baja karbon rendah dan baja paduan rendah. Namun, hingga saat ini belum ada penelitian serupa yang dilakukan untuk baja tahan karat. Oleh karena itu, tujuan dari penelitian ini adalah menerapkan persamaan matematis guna mendapatkan model sederhana yang dapat digunakan untuk mengevaluasi laju korosi pada baja tahan karat akibat korosi air laut. Dalam penelitian ini, bahan yang digunakan adalah baja tahan karat komersial 304. Pengkajian sifat fisiokimia bahan ini meliputi analisis komposisi kimia, struktur mikro, serta sifat mekanik seperti kekuatan tarik dan kekerasan berasal dari speifikasi produk. Metode pengurangan berat digunakan untuk mengukur tingkat korosi, dilanjutkan dengan penerapan persamaan prediksi penurunan kehilangan berat. Analisis korosi selanjutnya didapatkan dari plotting kehilangan berat yang kemudian dikonfirmasi dengan pengukuran kualitas air laut dalam eksperiment dan foto makro. Hasil penelitian menunjukkan bahwa model dan eksperimen memiliki persentase kesalahan terbaik saat waktu perendaman mencapai 600 jam. Selain itu, persamaan model laju korosi menunjukkan kecenderungan yang mendekati hasil eksperimen dengan bertambahnya waktu perendaman. Dengan demikian, penggunaan pendekatan empiris dalam prediksi kehilangan berat dan laju korosi pada baja tahan karat memberikan kontribusi alternatif yang berharga dalam memperkirakan laju korosi pada jenis bahan ini. Selain itu, penggunaan model empiris ini juga mampu memprediksi laju korosi stainless steel di lingkungan laut, sehingga dapat dijadikan pertimbangan dalam merancang alternatif desain dengan material tersebut

 

Abstract

Evaluation of the use of an empirical approach for corrosion prediction has been carried out on low carbon and low alloy steels, but it still limited for stainless steel. The aim of this research is applying a mathematical equation to obtain a simple model, so that it can evaluate the corrosion rate of stainless steel due to seawater corrosion. Commercial stainless steel 304 was used as the tested material. The physiochemical properties in terms of chemical composition and microstructure as well as mechanical properties which are tensile strength and hardness were evaluated. The weight loss method is used for corrosion rate measurement, and further applicate to the the weight loss prediction equation. Corrosion analysis was obtained from plotting weight loss confirmed by water quality measurements and photo macro. The results of weight loss by model and experiment have the best percentage error at immersion time of 600 hours. Meanwhile, the equation for the corrosion rate model has a trend closer to the experimental results with increasing immersion time. The use of empirical approachment for weight loss prediction on the stainless steel can provide the alternative contribution for its corrosion rate prediction, especially in the marine environment. These results can be an alternative design consideration for future.

Kata Kunci

Baja tahan karat; Kehilangan Berat; Lingkungan Korosi; Prediksi Empiris

Teks Lengkap:

PDF

Referensi

Ali, N., & Fulazzaky, M. A. (2020). The empirical prediction of weight change and corrosion rate of low-carbon steel. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e05050

Ali, N., Putra, T. E., Iskandar, V. Z., & Ramli, M. (2020). A simple empirical model for predicting weight loss of mild steel due to corrosion in NaCl solution. International Journal of Automotive and Mechanical Engineering, 17(1), 7784–7791. https://doi.org/10.15282/IJAME.17.1.2020.24.0579

Annon, I. A., Abbas, A. S., Al-Azzawi, W. K., Hanoon, M. M., Alamiery, A. A., Isahak, W. N. R. W., & Kadhum, A. A. H. (2022). Corrosion inhibition of mild steel in hydrochloric acid environment using thiadiazole derivative: Weight loss, thermodynamics, adsorption and computational investigations. South African Journal of Chemical Engineering, 41, 244–252. https://doi.org/10.1016/j.sajce.2022.06.011

Arthur, D. E. (2020). Computational and experimental study on corrosion inhibition potential of the synergistic 1:1 combination of Arabic and cashew gums on mild steel. Petroleum Research, 5(2), 170–180. https://doi.org/10.1016/j.ptlrs.2020.01.002

Ben Seghier, M. E. A., Knudsen, O. Ø., Skilbred, A. W. B., & Höche, D. (2023). An intelligent framework for forecasting and investigating corrosion in marine conditions using time sensor data. Npj Materials Degradation, 7(1), 91. https://doi.org/10.1038/s41529-023-00404-y

Benarie, M., & Lipfert, F. L. (1986). A General Corrosion Function in Terms of Atmospheric Pollutant Concentrations and Rain pH. Atmospheric Environment (1967), 20(10), 1947–1958.

Cai, Y., Xu, Y., Zhao, Y., Zhang, W., Yao, J., Wei, M., Zhou, K., & Ma, X. (2021). Quantitative understanding of the environmental effect on B10 copper alloy corrosion in seawater. Metals, 11(7), 1–17. https://doi.org/10.3390/met11071080

Chen, Y. Y., Chou, L. B., & Shih, H. C. (2006). Factors affecting the electrochemical behavior and stress corrosion cracking of Alloy 690 in chloride environments. Materials Chemistry and Physics, 97(1), 37–49. https://doi.org/10.1016/j.matchemphys.2005.07.053

Dong, J., Han, E., & Ke, W. (2007). Introduction to atmospheric corrosion research in China. In Science and Technology of Advanced Materials (Vol. 8, Issues 7–8, pp. 559–565). https://doi.org/10.1016/j.stam.2007.08.010

Fonseca, I. T. E., Picciochi, R., Mendonça, M. H., & Ramos, A. C. (2004). The atmospheric corrosion of copper at two sites in Portugal: A comparative study. Corrosion Science, 46(3), 547–561. https://doi.org/10.1016/S0010-938X(03)00176-8

Frankel, G. S., Vienna, J. D., Lian, J., Scully, J. R., Gin, S., Ryan, J. V., Wang, J., Kim, S. H., Windl, W., & Du, J. (2018). A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. In npj Materials Degradation (Vol. 2, Issue 1). Nature. https://doi.org/10.1038/s41529-018-0037-2

Gerengi, H., Sen, N., Uygur, I., & Kaya, E. (2020). Corrosion behavior of dual phase 600 and 800 steels in 3.5 wt.% NaCl environment. Journal of Adhesion Science and Technology, 34(8), 903–915. https://doi.org/10.1080/01694243.2019.1688925

Hao, L., Zhang, S., Dong, J., & Ke, W. (2012a). A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion. Corrosion Science, 54(1), 244–250. https://doi.org/10.1016/j.corsci.2011.09.023

Hao, L., Zhang, S., Dong, J., & Ke, W. (2012b). Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere. Corrosion Science, 59, 270–276. https://doi.org/10.1016/j.corsci.2012.03.010

Ishijima, Y., Ueno, F., & Abe, H. (2022). Time Dependence of Corrosion Behavior on Ta in NaOH Solutions. Materials Transactions, 63(4), 538–544. https://doi.org/10.2320/matertrans.MT-C2021005

Iswanto, P. T., Malau, V., Priyambodo, B. H., Wibowo, T. N., & Amin, N. (2017). Effect of shot-peening on hardness and pitting corrosion rate on load-bearing implant material AISI 304. Materials Science Forum, 901 MSF, 91–96. https://doi.org/10.4028/www.scientific.net/MSF.901.91

Iswanto, P. T., Yaqin, R. I., Akhyar, & Sadida, H. M. (2020). Influence of shot peening on surface properties and corrosion resistance of implant material AISI 316L. Metalurgija, 59(3), 309–312.

Li, H., Shi, A., Li, M., & Zhang, X. (2013). Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/434012

Loto, R. T. (2017). Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems. Journal of Materials Research and Technology, 6(3), 203–212. https://doi.org/10.1016/j.jmrt.2016.11.001

Loto, R. T., Loto, C. A., Popoola, A. P. I., & Fedotova, T. (2019). Inhibition effect of butan-1-ol on the corrosion behavior of austenitic stainless steel (Type 304) in dilute sulfuric acid. Arabian Journal of Chemistry, 12(8), 2270–2279. https://doi.org/10.1016/j.arabjc.2014.12.024

Lu, X., Liu, Y., Zhao, H., & Wang, Z. (2020). Corrosion Behavior of Brass H62 in Harsh Marine Atmosphere in Nansha Islands, China. Journal of Materials Engineering and Performance, 29(12), 8156–8164. https://doi.org/10.1007/s11665-020-05287-7

Lv, J., Guo, W., Liang, T., & Yang, M. (2017). The effects of ball milling time and surface enriched chromium on microstructures and corrosion resistance of AISI 304 stainless steel. Materials Chemistry and Physics, 197, 79–86. https://doi.org/10.1016/j.matchemphys.2017.05.026

Ma, Y., Li, Y., & Wang, F. (2010). The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment. Corrosion Science, 52(5), 1796–1800. https://doi.org/10.1016/j.corsci.2010.01.022

Margono, Priyambodo, B. H., & Yaqin, R. I. (2021). Shot Peening on AISI 304 by Various Sizes of Steel Ball Particles to Reduce Corrosion Rates. The Journal of Corrosion Science and Engineering, 23, 1–8.

May, M. (2016). Corrosion behavior of mild steel immersed in different concentrations of NaCl solutions. Journal of Sebha University, 15(1), 1–13. https://www.researchgate.net/publication/317502595

Meng, X. C., Huang, M., Li, C. L., Xu, W., Sun, Z., Qian, Y. Z., Li, L., Yuan, X. L., Huang, J. J., Gao, X., Li, J. G., Zuo, G. Z., & Hu, J. S. (2020). Corrosion of 304 stainless steel in static liquid lithium under high vacuum. Nuclear Materials and Energy, 25. https://doi.org/10.1016/j.nme.2020.100823

Pan, C., Lv, W., Wang, Z., Su, W., Wang, C., & Liu, S. (2017). Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere. Journal of Materials Science and Technology, 33(6), 587–595. https://doi.org/10.1016/j.jmst.2016.03.024

Park, S. H. C., Sato, Y. S., Kokawa, H., Okamoto, K., Hirano, S., & Inagaki, M. (2004). Corrosion resistance of friction stir welded 304 stainless steel. Scripta Materialia, 51(2), 101–105. https://doi.org/10.1016/j.scriptamat.2004.04.001

Priyambodo, B. H., Malau, V., Iswanto, P. T., Sujitno, T., & Suprapto. (2017). The Influence of TiN-Sputtering on Hardness and Corrosion Rate of AISI 304 for Biomaterials Application. Journal of Corrosion Science and Engineering, 10, 1–9. https://www.researchgate.net/publication/329557668

Priyambodo, B. H., Malau, V., Tri Iswanto, P., Dwi Setyana, L., Slamet, S., & Kurniawan, Y. (2019). Improve Corrosion Resistant and Corrosion Fatigue Cracking Performance on AISI 304 by Shot Peening Process as Alternative Biomaterials. Journal of Corrosion Science and Engineering, 22, 1–10. http://www.jcse.org

Priyotomo, G., Nuraini, L., Prifiharni, S., & Sundjono, S. (2018). Corrosion Behavior of Mild Steel in Seawater from Karangsong & Eretan of West Java Region, Indonesia. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 11(2), 184. https://doi.org/10.21107/jk.v11i2.4335

Qi, Y., Luo, H., Zheng, S., Chen, C., Lv, Z., & Xiong, M. (2014). Effect of Temperature on the Corrosion Behavior of Carbon Steel in Hydrogen Sulphide Environments. In Int. J. Electrochem. Sci (Vol. 9). www.electrochemsci.org

Qiao, C., Shen, L., Hao, L., Mu, X., Dong, J., Ke, W., Liu, J., & Liu, B. (2019). Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere. Journal of Materials Science and Technology, 35(10), 2345–2356. https://doi.org/10.1016/j.jmst.2019.05.039

Rashid, S., Islami, N., Ariffin, A. K., Ridha, M., & Fauna, S. (2016). The effect of immersion time on the corrosion behavior of SUS304 in brine using half-cell potential measurement. Jurnal Teknologi, 78(6–9), 91–99. https://doi.org/10.11113/jt.v78.9152

Royani, A., Nuraini, L., Prifiharni, S., & Priyotomo, G. (2018). Corrosion Rate of Various Carbon Steels in Raw Water for Water Cooling System at Ammonia Plant. International Journal of Engineering Trends and Technology, 59. https://doi.org/10.14445/22315381/IJETT-V59P209

Royani, A., Prifiharni, S., Nuraini, L., Priyotomo, G., Sundjono, Purawiardi, I., & Gunawan, H. (2019). Corrosion of carbon steel after exposure in the river of Sukabumi, West Java. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012031

Royani, A., Prifiharni, S., Priyotomo, G., & Sundjono. (2020). Corrosion behavior of low carbon steel pipe in condensate environment. Journal of Corrosion Science and Engineering, 23(August), 1–15.

Sander, A., Berghult, B., Broo, A. E., Johansson, E. L., & Hedberg, T. (1996). Iron Corrosion In Drinking Water Distribution Systems-The Effect Of pH, Calcium And Hydrogen Carbonate. Corrosion Science, 38(3), 443–455.

Sanni, O., Adeleke, O., Ukoba, K., Ren, J., & Jen, T. C. (2022). Application of machine learning models to investigate the performance of stainless steel type 904 with agricultural waste. Journal of Materials Research and Technology, 20, 4487–4499. https://doi.org/10.1016/j.jmrt.2022.08.076

Seo, J., Lee, J. S., Kim, H. Y., & Yoon, S. S. (2015). Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall. Experimental Thermal and Fluid Science, 61, 121–129. https://doi.org/10.1016/j.expthermflusci.2014.10.019

Shtefan, V., Kanunnikova, N., Pilipenko, A., & Pancheva, H. (2019). Corrosion Behavior of AISI 304 Steel in Acid Solutions. Materials Today : Proceeding, 2019(6), 150–157. www.sciencedirect.com

Soares, C. G., Garbatov, Y., Zayed, A., & Wang, G. (2009). Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corrosion Science, 51(9), 2014–2026. https://doi.org/10.1016/j.corsci.2009.05.028

Song, Q. N., Xu, N., Bao, Y. F., Jiang, Y. F., Gu, W., Zheng, Y. G., & Qiao, Y. X. (2017). Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5%NaCl solutions. Acta Metallurgica Sinica (English Letters), 30(8), 712–720.

Refbacks

  • Saat ini tidak ada refbacks.